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Abstract 

MoO3 is an interesting oxide prototype because its catalytic activity is sensitive to the 

presence and nature of defects. In this work, we demonstrate that we can control the number of 

defects in single-layer MoO3 nanostructures grown on Au(111) by a simple thermal reduction 

treatment. X-ray photoelectron spectroscopy demonstrates the formation of Mo5+ species and 

oxygen vacancies during annealing at 650 K. The percentage of Mo5+ increases with the duration 

of annealing, until a stable composition containing 50% Mo6+ and 50% Mo5+ is obtained.   

Surprisingly, the formation of lower oxidation states such as Mo4+ was not observed. The 

reduced MoOx islands remain one layer high, based on scanning tunneling microscope (STM) 

images. The two-dimensional nature of the reduced oxide nanocrystals may be due to a large 

barrier for structural reorganization and, thus, may account for the absence of Mo oxidation 

states lower than +5. Based on scanning tunneling microscopy images and density functional 

calculations, we propose that the formation of Mo5+  ions during annealing is not associated with 

formation of oxygen point defects, but can be attributed to the formation of extended one-

dimensional shear defects. These reduced structures are useful for studying the dependence of 

reactivity on defect type, and present exciting possibilities for chemical sensors and other 

applications. 

 

*Author to whom correspondence should be addressed. E-mail: 
cfriend@deas.harvard.edu.Keywords: X-ray photoelectron spectroscopy, Scanning tunneling 
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microscopy, Defects, Molybdenum oxides, Density functional calculations, Nanostructures, 
Au(111), Catalysis 
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Introduction 

Metal oxides constitute an important class of commercial catalysts [2]. For example, 

supported MoO3 promotes the partial oxidation of methane to formaldehyde and is widely used 

as a catalyst in the petroleum and chemical industry [3-6]. The catalytic properties of metal 

oxides depend sensitively on the presence and nature of defects. In the case of molybdenum 

oxides, a high surface oxidation state is expected to be a crucial factor for partial oxidation of 

hydrocarbons [7]; on the other hand, the presence of oxygen vacancies plays an important role in 

enhancing selectivity and reactivity by providing reactive sites [8]. Thus the ability to control 

quantity and type of defects present in the oxides is important, both for fundamental studies and 

for applications. 

In recent years, novel metal oxide nanocrystals have been grown on metal surfaces[9] [Quek, 

2005 #3805;Biener, 2004 #3533]. This development adds another dimension of interest because 

these nanocrystals often exhibit structures and electronic properties that are distinct from the 

bulk phase, and which arise from interface [Altieri, 2001 #4007;Sinnott, 2003 #4008] and 

nanoscale [10-12] effects. The ability to grow such structures in a controllable fashion thus opens 

the door for many novel applications. Previously, we demonstrated that crystalline two-

dimensional MoO3 nanostructures on Au(111) can be synthesized on Au(111) via oxidation of 

Mo nanoclusters using NO2 as oxidizing reagent [13], [14]. Whilst bulk MoO3 is a bilayered 

material, these MoO3 nanocrystals exhibit a unique single-layer structure with Au replacing the 

other half of the bilayer. Epitaxy with the Au(111) substrate is achieved via straining the in-plane 

Mo-O bonds which gives rise to electronic properties that are different from bulk MoO3 [1]. The 

well-defined and novel structure of these nanocrystals provides an interesting starting point for 

the synthesis of reduced molybdenum oxide nanocrystals.  
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In this work, we demonstrate that it is possible to achieve selective reduction of these 

ordered MoO3 monolayer nanocrystals on Au(111).In principle, Mo has three stable oxidation 

states: Mo6+, Mo5+ and Mo4+. Recently, the group of Hrbek reported on the reduction of ramified 

MoO3 nanoclusters on the Au(111) surface prepared by NO2-induced oxidation of Mo 

nanoclusters at 500 K [15, 16]. The reduction of these MoO3 nanoclusters during annealing to 

700 K was accompanied by a loss of Mo species, and resulted in a mixture of Mo+5 and Mo+6  

species [15, 16]. STM showed that the reduced MoOx structures remained 2-dimensional, but did 

not provide insight into the distribution of the reduced Mo atoms, in part because of structural 

disorder. Lower oxidation states of Mo such as Mo+4 can be prepared by oxidation of Mo metal 

by O2 exposure. In this case, the full oxidation to Mo+6 seems to be kinetically hindered. 

Herein, we report on both theoretical and experimental studies on the thermal reduction of 

two-dimensional MoO3 nanocrystallites. Crystalline nanoparticles are more amenable to study 

using theory and experiment. As described in a previous publication, the synthesis of fully 

oxidized and well-ordered MoO3 nanostructures on Au(111) requires iterative Mo deposition and 

oxidation with NO2 [13]. Similar to bulk MoO3, the reduction of these single-layer MoO3 

nanocrystals seems to proceed via shear defect formation which results from one-dimensional 

ordering and elimination of oxygen vacancies. The oxidation state of Mo associated with these 

shear-plane defects is +5. The percentage of Mo in the +5 state increases as a function of 

annealing time, up to a maximum of 50% at 650 K. This provides us with a methode to tailor the 

growth of reduced molybdenum oxide nanostructures with controllable oxidation states.  

 

Methods 
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Experimental 

The experiments were performed in three separate ultrahigh vacuum (UHV) systems, all 

described previously. Scanning tunneling microscopy experiments were performed in a 

commercial ultrahigh vacuum system with a base pressure of 5x10-11 mbar. The system has 

separate compartments for sample preparation, e.g., Mo evaporation, and sample 

characterization. The characterization compartment is equipped with commercial instrumentation 

for scanning probe microscopy (Omicron), Auger electron spectroscopy (AES), and low energy 

electron diffraction (LEED). 

The XPS chamber (base pressures ~8×10-10 mbar) is equipped with a low-energy electron 

diffraction (LEED) equipment, a quadrupole mass spectrometer (UTI 100C) for temperature 

programmed reaction experiments and an XPS system (PHI ESCA 5300) consisting of an X-ray 

source and a hemispherical analyzer.  

The HREELS chamber (base pressure ~5×10-10 mbar) is equipped with a commercial high-

resolution electron energy loss spectrometer (LK technologies, model LK-2000-14-R), a LEED 

equipment, a quadrupole mass spectrometer (UTI 100C) and an Auger electron spectrometer 

(Perkin-Elmer model 15-555).  

In all systems, the clean Au(111) surface was prepared by cycles of Ar+ sputtering (1000 

eV) at 300 K, followed by annealing at 900 K for 5 minutes and 700 K for 1 hour. This 

procedure was repeated until no impurities, e.g. carbon, oxygen, or Mo, were detected using 

either XPS or Auger electron spectroscopy. The presence of the ‘herringbone’ reconstruction, 

inherent to clean Au(111) surfaces, was verified by the presence of satellite spots in the Au(111) 

LEED patterns. 

MoO3 nanostructures were prepared by oxidation of Mo nanoclusters using NO2. Deposition 
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of Mo nanoclusers could be achieved either by chemical vapor deposition (CVD) or by physical 

vapor deposition (PVD). In the CVD method, Mo(CO)6 (98 %) and NO2 (Matheson, 99.5%) 

were dosed iteratively [13]: the reconstructed Au(111) surface was alternatively exposed to 1 L 

Mo(CO)6 and 10 L NO2 at 450 K. After four iterations, the sample was heated (dT/dt ≈ 5 

K/second) and maintained at 600 K for 1 minute. This cycle was repeated four times such that 

the total exposure to Mo(CO)6 and NO2 was 16 L and 160 L, respectively. In the PVD method, 

molybdenum (Goodfellow, 99.9%) was evaporated from rod material (~1.5 mm diameter) using 

an electron beam evaporator (Omicron) (900 V/~65 mA) followed by exposure to NO2 

(Matheson, 99.5%) at 500 K with a typical pressure of 1×10-7 Torr, as described in detail 

elsewhere [14]. In the present studies, we used the CVD method to prepare MoO3 nanostructures 

in XPS and HREELS chambers and the PVD method in the STM system. Importantly, both 

methods yield identical MoO3 nanostructures, as confirmed by STM and LEED in earlier studies 

[13], [14]. 

All XPS spectra were collected at room temperature with a pass energy of 22.36 eV using 

Mg Kα radiation ((hν  = 1253.6 eV). The binding energy was calibrated by Au 4f7/2 = 84.0 eV 

for each spectrum. All HREELS (vibrational) spectra were collected at room temperature with a 

beam energy of 6.91 eV. The typical full width at half-maximum (FWHM) is ~70 cm-1. STM 

images were collected at room temperature. Z-channel (topography) and I-channel (constant 

height) images were obtained simultaneously. Etched Pt0.8Ir0.2 tips from molecular imaging were 

used for imaging. 

The XPS data analysis involved satellite and non-linear background subtraction, curve-

fitting (mix Gaussion-Lorentzian function with 85% of Gaussion) and peak area determination 

by integration of both Mo 3d3/2 and 3d5/2 peaks. The Mo 3d region was fitted by doublets with 
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fixed spectroscopic parameters, such as spin-orbit separation (3.1 eV), Mo(3d3/2)-(3d5/2) intensity 

ratio (R = 0.66) and full width at half maximum (FWHM = 1.7 eV), but with independent and 

variable positions and intensities as optimized by the program. 

 

Theoretical 

Density functional theory (DFT) calculations employed the projected augmented wave 

method [Kresse, 1999 #4010;Blochl, 1994 #4011] and the Perdew-Wang 91 gradient correction 

for the exchange-correlation functional, as implemented in VASP [17]. We model the Au(111) 

surface by a slab of 6 Au layers, separated by 16.5 Å of vacuum before the oxide is introduced, 

and the oxide and top 3 Au layers were relaxed. Further computational details can be found in 

our previous publication [1]. 

 

Results and discussion 

 As-prepared MoO3 nanostructures  

As described above, ordered two-dimensional MoO3 nanostructures on Au(111) can be 

produced via oxidation of Mo nanoclusters by NO2 exposure. The required Mo nanoclusters can 

be prepared by chemical vapor deposition (CVD) using molybdenum hexacarbonyl as a Mo 

precursor or by physical vapor deposition (PVD). Both techniques result in the growth of well-

ordered, 2D MoO3 islands as confirmed by STM and LEED [13][14]. For example, the 

characteristic c(4×2) LEED pattern displayed in Figure 1 was obtained from MoO3 

nanostructures on Au(111) prepared by the CVD method in the XPS chamber. The pattern is 

identical to those observed in our earlier STM studies [13], indicating that the same structure was 

prepared. 
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XPS results demonstrate that the Mo in these oxide structures is essentially fully 

oxidized─in the +6 state─except for a small percentage of defects (Figure 2). Specifically, the 

predominant oxidation state is signified by the peaks with binding energies of 232.3 eV (Mo 

3d5/2) and 235.4 eV (Mo 3d3/2) which are similar to the binding energies reported for bulk MoO3 

(BE = 232.3-232.8 eV; thus indicating the formation of MoO3. A weak shoulder at lower binding 

energy indicates the possible presence of a small percentage of Mo5+. Based on the signal 

intensities of the Mo +5 related peaks at 231. 1 and 234.2 eV, as much as 6% Mo5+ may be 

present.  

The ability to nearly fully oxidize Mo so as to form ordered monolayer nanocrystals 

provides a starting point to control the oxidation states of these oxides. Iterative dosing of 

Mo(CO)6 and NO2 was necessary due to the kinetic control of oxidation: full oxidation of Mo is 

most readily effected with initially small Mo clusters (< 5nm) as starting material [13], whilst 

partially oxidized Mo with lower oxidation states, such as Mo5+ and Mo4+ , was observed when 

Mo clusters were larger. Growth of larger MoO3 islands can be achieved by iterative deposition 

/oxidation cycles. For example, after 16 cycles well-ordered islands were found to be 600 nm2 on 

average, yielding a clear c(4×2) LEED pattern. No LEED pattern of MoO3 on Au(111) was 

reported by Z. Song et al.[16], possibly due to the ramified oxide structure, or smaller island size. 

As mentioned above, a small fraction of Mo5+ was observed in the MoO3 nanostructures . 

Importantly, this small amount of Mo5+ persisted even after extensive dosing of NO2. In our 

study, 20 L NO2 was used instead of 10 L NO2 for each iterative dosing, and the resultant XP 

spectrum still yields about 6% Mo5+. This result indicates the presence of a small percentage of 

defects in the structure, which has been observed in STM studies as well [14]. 
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We have previously proposed a model for the atomic structure of a continuous 2D layer of 

single-layer MoO3 on Au(111). The model is consistent with LEED, STM (CVD and PVD), XPS 

(oxidation state: Mo6+) and HREELS results [1]. 

 

Thermal reduction of MoO3 nanostructures at 650 K 

The Mo5+ related XPS signal increases in intensity upon annealing to 650 K (Figure 3a). 

Specifically, annealing to 650 K for 20 minutes results in a broadening of Mo 3d peaks, which 

can be fitted a mixture of 70% Mo6+ and 30% Mo5+ with binding energies of 232.5 eV and 231.4 

eV for Mo 3d5/2, respectively. The fraction of Mo in the +5 oxidation state further increases with 

increasing annealing time, and ultimately a 1:1 mixture of Mo5+:Mo6+ is formed after annealing 

at 650 K for 1 hour (Figure 3a). No further changes in the Mo5+:Mo6+ ratio were observed upon 

heating for longer times, up to 120 minutes (Figure 3b). Furthermore, no other oxidation states 

were detected after heating to 650 K in any of our experiments. Specifically, no Mo4+ is formed, 

based on the absence of intensity in the Mo 3d5/2 region at 229.1 eV. 

The partial reduction of Mo+6 to Mo+5 is accompanied by the loss of a small amount of Mo 

based on the integrated intensities of Mo 3d region (Figure 3b). Specifically, the total amount of 

Mo decrease by ~ 6%/8%/10% during annealing at 650 K for 20/40/60 minutes. Finally, 88% 

Mo remains on the Au surface upon annealing at 650 K for 120 minutes. The small loss of Mo is 

probably the result of some dissolution of Mo into the bulk associated with reduction or 

desorption of MoO3 molecules during annealing. 

The partial reduction of Mo+6 during annealing also causes changes in the vibrational 

spectra (Figure 4). Before annealing, the most intense peak is found at 850 cm-1 with a shoulder 

at 990 cm-1 (Figure 4(i)), and two less intense peaks are observed at 480 and 280 cm-1. Based on 
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DFT calculations on the MoO3 structure, the peaks at 990 cm-1 and 850 cm-1 can be assigned to 

stretches of the terminal O and bridging O bonds respectively, whilst the other modes involve the 

bending of bridging O bonds, and to a lesser extent, terminal O bonds. The atomic structure of 

the ordered MoO3 monolayer phase on Au(111) including the positions of terminal and bridging 

oxygen atoms is shown in Figure 5(a). Annealing the MoO3 nanostructures to 650K results in a 

decrease of the peak intensities (Figure 4(ii)-(iv)). Specifically, the peak intensity of the 850 cm-1 

bridging O stretch deceases to about 80% after 20 minutes of annealing, and to about 20% after 

60 minutes. The lower frequency peaks also decrease. Meanwhile, the terminal oxygen stretch 

peak resolves upon annealing. Although a decrease in peak intensity is also observed for the 

terminal O stretch, the ratio of peak intensities for the bridging and terminal O stretches changes 

from 4:1 to 2:1, indicating a structural change. The fact that the terminal oxygen related 

vibrational modes are less affected by the reduction process is a first indication that the reduced 

Mo oxide remains a two-dimensional structure  

 

Proposed model for thermally reduced oxide 

We propose that reduction of the MoO3 monolayer structures involves the formation of 

shear defects similar to of the shear planes found in the so-called Magneli phases of reduced bulk 

Mo-trioxide, MonO3n-1 [18]. Such shear defects could eliminate one-dimensionally ordered arrays 

of oxygen vacancies formed during annealing by a local transformation (shearing) from corner-

connected to edge-connected MoO3 units. [lit20] In the case of the Magneli phases of reduced 

bulk Mo-trioxide, the shear planes are regularly spaced indicating a mutual elastic repulsion.. 

The driving force for shear plane formation seems to be the stabilization of isolated oxygen 
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vacancies by migration towards one another to form shear planes of edge-sharing MoO6 

octahedra. The shear planes can then expand by trapping more vacancies [18].  

Similarly, the reduction of 2D MoO3 islands could cause the formation of one-dimensional 

shear defects which would lead to the elimination of the oxygen vacancies formed during 

thermal reduction. The formation of these shear defects involves a local transformation of 

corner-connected MoO4 tetrahedra to edge-connected MoO4 tetrahedra (Figures 5b and 6e). This 

scenario seems to be supported by STM. Figure 6 shows STM images collected from MoO3-

covered Au(111) surfaces before (a) and after annealing at T > 650K (b-d). The stoichiometric 

MoO3 islands shown in Figure 6a were prepared by PVD of Mo (~0.2 ML) and subsequent 

oxidation with NO2 at 500 K. These MoO3 islands exhibit an apparent height of ~0.5 nm [14]. 

Annealing at T > 650 K leads to several changes: (i) the MoO3 islands grow considerably in size 

(Figure 6b); (ii) extended, one-dimensional defects appear on top of the MoO3-x islands (Figure 

6c) which (iii) separate regions shifted by half a lattice constant (Figure 6d), and (iv) the Mo 

coverage decreases by ~ 60% (suggesting that the actual annealing temperature was slightly 

higher than 650 K). Clearly, the reduced Mo oxide has a two-dimensional structure despite the 

large scale mass transport required for the observed morphological changes. The Z-channel STM 

image shown in Figure 6c reveals that the surface corrugation on top of the reduced MoO3 island 

is less than 0.1 nm. A possible structural model of a reduced single-layer MoO3 island is shown 

in Figure 6e. The model assumes the formation of shear planes by a local transformation of 

corner connected MoO3 units to edge connected MoO3 units, and is capable of reproducing the 

main features observed in the high resolution STM image shown in Figure 6d. Specifically, it 

predicts the observed shift of the MoO3 lattice by half a lattice constant between regions 

separated by a shear defect. The average spacing between the line defects shown in Figure 6c,d is 
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approximately 1.5 nm which according to the shear model shown in Figure 6e would correspond 

to Mo+5 fraction of 40%. 

Figure 7 shows a relaxed shear defect structure in which one bridging O is lost for every four  

Mo. The defect is characterized by more closely-spaced Mo rows connected by 3-fold 

coordinated O (3-fold coordinated O is also present in bulk MoO3). The bond lengths of Mo-Oa 

and Mo-Ob in the defect structure are, respectively, in the range (-5.1, +5.1)% and (-4.6, +6.2)% 

of their corresponding values in the fully oxidized oxide. The bond length of Mo-Ot remains 

unchanged consistent with the vibrational spectra shown in Figure 4. The longest Mo-O bonds 

(2.08 Å) are those joining Mo5+ to a 3-fold coordinated O atom across the defect line. The formal 

oxidation state of Mo is +6 and +5 between and along the shear defects respectively, and no 

Mo4+ is present. This structure is consistent with X-ray photoelectron data. The loss of bridging 

O in the shear structure is also consistent with vibrational peak intensities, which indicate a 

sharper drop in the intensity for the bridging O stretch compared to that for the terminal O stretch. 

The formation of shear defects is further corroborated by the observation that the lattice planes 

on both sides of these defects are shifted by half a lattice constant with respect to each other 

(Figure 6). Finally, the 1D defects imaged in STM (Figure 6) are in approximately the same 

orientation as predicted by our model; that is in the experimental STM image, these defects are at 

an angle of about 42° relative to the <1-10> direction of Au. Simulating STM images in the 

Tersoff-Hamann approximation results in a bright line representing the shear plane defect, which 

makes an angle of 41° relative to the <1-10> direction, in agreement with experiment (Figure 7c). 

From the projected density of states of the theoretical model (Figure 8), it can be seen that 

Mo atoms associated with the shear defect have a higher density of states at the Fermi level than 

those away from the defect or those in the fully-oxidized oxide, suggesting possible enhanced 
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reactivity (especially involving loss of O) along shear planes. The predominant contribution to 

Fermi level states arises from d states of Mo5+ (Figure 8a). The density of states of O bridging 

atoms in the shear plane region, both of Oa and Ob type, are significantly shifted compared to 

those of corresponding sites far from the defect. This is the result of an increase in coordination 

number of these O atoms (2 away from the defect and 3 in the defect region), and changes in the 

oxidation state of Mo atoms in the defect region, to which these O bridging atoms are bonded.  

The shear defects may exhibit different reactivity and interesting electrical properties due to 

the presence of the oxygen vacancies. The ability to quantitatively control defects and oxidation 

states is the key toward demonstrating the effect of defects and specific oxidation states on 

oxidation reactions. Our results above clearly show that single-layer MoO3 nanostructures on 

Au(111) can be selectively reduced in a  controllable manner that depends on annealing 

temperature and duration. In addition, the resulting molybdenum oxide structures may also 

present exciting possibilities for other applications, e.g. chemical sensors. 

 

Limitations of model and other possible structures 

It is important to note that the theoretical model proposed here may not accurately represent 

the experimental system, because the model assumes an infinitely long defect structure. This 

difference may account for discrepancies between the STM simulation and experimental image, 

such as the shorter length of defects and presence of black spots in the experimental image, 

which also contains a smaller density of defects. Systems involving finite-length-defects or lower 

densities of defects are more complex and computationally demanding. However, the model 

represents a possible local atomic structure at the defects and is consistent with experimental 

results. 
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The final composition of 1:1 for the ratio of Mo5+ to Mo6+, obtained with prolonged 

annealing, corresponds to the well-defined stoichiometry Mo4O11. It is interesting that bulk 

Mo4O11 is the Magneli phase with the highest known density of shear defects [18]. Bulk Mo4O11 

has a three-dimensional (3D) structure, with layers of Mo6O22 linked by MoO4 tetrahedra via 

covalent bonds [Canadell, 1989 #4012]. It is possible that the final stable Mo4O11 phase observed 

in our experiments is the two-dimensional analog to the three-dimensional Mo4O11 bulk phase. 

This would present exciting opportunities for fundamental studies because bulk Mo4O11 exhibits 

charge density wave transitions [Canadell, 1989 #4012], and it would be interesting to determine 

how a metallic substrate would affect this phenomenon. The fact that we do not observe the 

formation of a three-dimensional Mo4O11phase indicates the presence of kinetic barriers. Indeed, 

a 3D Mo oxide phase can be grown on Au(111) if the Mo deposition is performed in an ambient 

of NO2 at 500 K (unpublished results)..Further STM studies will be necessary to refine the 

structural model described in this work. 

Conclusions 

Well-ordered Mo oxide nanostructures on Au(111) have been prepared via deposition of 

metallic Mo (CVD or PVD) followed by oxidation using NO2 as a reactant. The observation of a 

well-ordered c(4×2) LEED pattern proves the formation of a crystalline epitaxial Mo oxide. XPS 

indicates that this oxide is MoO3, with up to 6% of Mo5+ defects. Upon annealing at 650 K, these 

MoO3 nanostructures are selectively reduced to Mo5+ indicating the formation of oxygen 

vacancies. The percentage of Mo5+ and the corresponding oxygen vacancies increases with 

increasing annealing time until the stable composition Mo4O11 (50% Mo+5) is reached after one 

hour at 650 K. Further reduction towards Mo4+ has not been observed. This simple annealing 
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treatment allows one to fine-tune the concentration of Mo5+ in the resulting selectively reduced 

structures by controlling the temperature and annealing time.  

Based on our preliminary STM results, the thermal reduction of MoO3 nanostructures on Au 

seems to lead to the formation of shear defects, similar to those observed in reduced bulk 

MoO3. .The driving force for the formation of these shear defects could be the elimination of 

oxygen vacancies produced by annealing. However, in contrast to the 3D structures observed in 

reduced bulk MoO3, the reduced MoO3 islands on Au(111) remain pure 2D structures..The 

formation of 3D structures in our model system has only been observed if Mo deposition is 

performed in an ambient of NO2 Thus the reduced 2D Mo oxide structures described in this 

paper are distinctly different from the 3D structures found in reduced bulk MoO3, and therefore 

provide an interesting platform for further studies. The ability to control and tailor the oxidation 

states in these novel oxide structures on metal surfaces suggests exciting possibilities for future 

applications. Further STM studies of the final Mo4O11 structure will be necessary to refine the 

structural model. 
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Figure Captions 

 

 
Figure 1. LEED patterns obtained at 300 K showing a c(4×2) structure after iterative dosing. 
The beam energy was 77 eV. This pattern is identical to that previously reported [13], [14]. 
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Figure 2. X-ray photoelectron spectrum for the Mo 3d region obtained after preparation of the 
oxidized Mo nanocrystals on Au(111) using iterative dosing of Mo(CO)6 and NO2. The total 
spectrum was fitted by ~94% Mo6+ (3d5/2, 232.3 eV) and ~6% Mo5+ (3d5/2, 231.1 eV). The curve 
fitting parameters and methods were described in detail in the experimental section. 
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Figure 3. X-ray photoelectron data for the Mo 3d region showing the reduction of MoO3 
nanostructures on Au(111) prepared by iterative dosing of Mo(CO)6 and NO2. (a) Spectra for: (i) 
as-prepared material; and followed by annealing to 650 K for (ii) 20 min; (iii) 40 min; (iv) 60 
min. All spectra were obtained at room temperature. (b) Corresponding data showing the fraction 
of Mo in the 6+ oxidation state (square) and the fraction of Mo remaining on the surface (circle) 
referenced to the as-prepared sample. 
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Figure 4. Vibrational (HREEL) spectra obtained after preparing MoO3 nanostructures on 
Au(111) by 16 iterations of dosing. The spectrum (i) is taken after the formation of MoO3 
without further annealing. The top three spectra are obtained after annealing to 650 K for (ii) 20 
minute, (iii) 40 minute and (iv) 60 minute. The FWHM is typically ~70 cm-1. All spectra were 
collected at room temperature. 
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Figure 5. (a) Atomic structure of MoO3 monolayer on Au(111). (b) Schematic showing the 
formation of shear defects. The dotted black box in (a) denotes the c(4×2) unit cell. The structure 
is repeated periodically in the plane of the Au surface. Only the top Au layer is shown (out of a 
total of 6 layers), as indicated by the hexagonal lattice of green circles. The [1-10] direction of 
Au is indicated. Mo and O are represented respectively by large blue and small red circles. 
Terminal (Ot) and bridging O’s (Oa and Ob) are labeled in (a). The subscripts for Oa and Ob 
indicate if the bridging O is on an atop or bridging site of the Au(111) surface. The schematic in 
(b) shows how the oxide structure can ‘shear’ in the direction of the arrow, to accommodate the 
loss of a row of bridging O’s as marked by black crosses. 
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Figure 6. STM images collected from MoO3-covered Au(111) surfaces before (a) and after 
annealing at T > 650K (b-d): (a) Stoichiometric MoO3 islands on Au(111) prepared by PVD of 
Mo and subsequent oxidation with NO2 at 500 K. The apparent island height is ~0.5 nm (I- 
channel, 125 nm x 125 nm). (b) Reduced Mo oxide island formed after annealing at T > 650 K 
(I- channel, 85 nm x 85 nm). Note the increase in size of the Mo oxide island. (c) Higher 
magnification STM image of the reduced Mo oxide island shown in (b). Despite the appearance 
of defects, the surface corrugation on top of the island is less than 0.1 nm demonstrating the 2D 
character of the structure (Z- channel, 17 nm x 17 nm, vertical color scale is 0-0.125 nm). (d) 
Extended, one-dimensional defects marked by dashed lines (s) appear on top of the Mo oxide 
islands and separate regions shifted by half a lattice constant. The full lines serve as a visual 
guide to demonstrate the lattice shift from a valley (v) to a ridge (r) position on opposite sites of 
the defect (s) (I- channel, 8 nm x 8 nm. (e) Structural model of a reduced single-layer MoO3 
island. Note that the presence of shear planes causes a shift of the MoO3 lattice by half a lattice 
constant between regions separated by a shear defect. 



Selective Thermal Reduction of Single-layer MoO3…,  Deng, etal.  SUSC-D—06-00862 

23 

 
Figure 7. Relaxed shear defect structure, (a) top view and (b) side view. (c) STM simulation 
with a sample bias of 1.5 V, with Gaussian smearing (standard deviation of 1.2 Å) to take into 
account tip convolution effects. The unit cell used in this model is indicated by a dashed black 
box in (a) and a dashed red box in (c). The defect region is shaded in gray in (a) and (b). The 
bright area in the STM simulation (c) corresponds to the shear plane defect. Mo atoms in the 
defect are raised by ~ 0.3 Å relative to those away from the defect, which are in turn ~ 3.7 Å 
above the top Au layer (6 % more than corresponding height in the perfect oxide (Figure 5)). 
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Figure 8. Electronic densities of states projected onto (a) Mo, (b) Ot, (c) Oa and (d) Ob, summed 
over s, p and d contributions. Red (thickest), blue and green (finest) curves respectively represent 
atoms at the shear defect, atoms mid-way between the defects in the reduced oxide (Figure 7), 
and atoms in the fully oxidized oxide (Figure 5). 
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